
18 X R D S  •  S P R I N G 2 0 1 3 •  V O L . 1 9 •  N O . 3

feature

Electrical Modeling 
and Simulation for 
Stockpile Stewardship
A survey of radiation modeling and circuit simulation  
approaches that are essential for stockpile stewardship.

By Heidi K. Thornquist, Eric R. Keiter,  
and Sivasankaran Rajamanickam
DOI: 10.1145/2425676.2425685

W ith the elimination of underground nuclear testing, science-based stockpile 
stewardship requires increased reliance on high-performance modeling and 
simulation of weapon systems. Established in 1995, the Advanced Simulation  
and Computing (ASC) Program supports the U.S. Defense Programs’ shift in 

emphasis from test-based confidence to simulation-based confidence. Under ASC, computer 
simulation capabilities are developed to analyze and predict the performance, safety, and 
reliability of nuclear weapons and to certify their functionality. These simulations are central 
to U.S. national security as they provide a computational surrogate for nuclear testing [1].

The ASC Program aims to model a 
large variety of physical and engineer-
ing phenomena and incorporate these 
models into integrated design codes. 
This includes, but is by no means lim-
ited to, the modeling of radiation, elec-
trical, and electromagnetic effects. 
Since electrical system components 
are major elements in today’s weapon 
systems, it is necessary to predict the 
reliability and survivability of weapon 
systems and components when ex-
posed to hostile radiation environ-
ments and electromagnetic insults. 
This article will present select electri-
cal modeling and simulation capabili-
ties developed under the ASC Program, 
specifically those deployed through 
the Xyce project [2]. A basic introduc-
tion to electrical simulation will be 
followed by a discussion of radiation 

modeling and algorithms research for 
parallel simulation of modern stock-
pile technologies.

ELECTRICAL SIMULATION
Electrical simulation is a field that in-
cludes both device and circuit simula-
tion techniques, each of which serves 
a distinct purpose. Device simulation 
is a higher fidelity approach, in which 
a single semiconductor device is repre-
sented with a set of coupled partial dif-
ferential equations (PDEs), discretized 
on a spatial mesh. Device simulation is 
intended to be accurate, using models 
for the behavior of the electrical devic-
es that are based on fundamental phys-
ics. However, device simulation is often 
compute-intensive and is not practical 
for simulation of entire circuits. Thus, 
transistor-level models (compact mod-

els) are derived from these physics-
based simulations that are based on 
the underlying physics, empirical data 
(curve-fitting), or tabular data (look-up 
table). Compact models are much faster 
to simulate than the original physics-
based model and can be integrated 
into a circuit simulator.

Circuit simulation is a technique 
for checking and verifying the design 
of electrical and electronic circuits 
and systems prior to manufacture and 
deployment [3]. This technique can 
be broken down into analog or digital 
(event-driven) approaches, as well as 
mixed-signal and mixed-mode simu-
lation. Analog circuit simulation uses 
a detailed, transistor-level description 
of the circuit to generate a system of 
network-coupled differential alge-
braic equations. For integrated circuit 
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design, time-domain (transient) ana-
log circuit simulation is an essential, 
yet expensive, part of the computer-
aided design process. Digital circuit 
simulation is used predominately for 
verifying timing characteristics like 
propagation time and rise/fall time de-
lays for circuits containing only digital 
components. Mixed-signal simulation 
can greatly reduce the analog simula-
tion time by replacing analog models 
with event-driven models for digital 
devices. Conversely, mixed-mode sim-
ulation adds fidelity by replacing ana-
log models with PDE-based devices.

In the design flow process, the en-
tire continuum of device and circuit 
simulation approaches are used. The 
process leverages the tradeoff be-
tween speed and fidelity to perform 
device verification (see Figure 1). How-
ever, when new semiconductor device 
technologies are designed, a compact 
model has to be produced as well to 

enable faster analog and/or mixed-sig-
nal simulation.

COMPACT MODELING  
OF RADIATION EFFECTS
Compact modeling is the founda-
tional model for circuit simulation. 
Most electrical compact models are 
designed to provide a mathematical 
current-voltage (I-V) relationship to a 

circuit simulator. The circuit simula-
tor will simulate a network of such de-
vices, and use these I-V relationships 
to enforce Kirchhoff’s laws across the 
network. Ideally, a compact model 
would be developed from a mathemat-
ically precise solution to the device 
equations. However, for most devices 
of interest, the set of equations is non-
linear, multidimensional, and com-

Figure 1. Continuum of device and circuit simulation approaches.
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incorporating expressions like this in 
existing transistor models, the addi-
tional behavior due to ionizing radia-
tion is modeled. When applied to large 
circuits, a simulator like Xyce is able 
to simulate collective photocurrent ef-
fects, such as power rail collapse.

PARALLEL CIRCUIT SIMULATION
Efficient, scalable circuit simulation is 
important for modern stockpile tech-
nologies, where parasitic effects can 
increase the device count in an inte-
grated circuit by an order of magnitude 
or more. Traditional transistor-level 
simulation, originally made popular 
by the Berkeley SPICE program [6], be-
comes impractical beyond tens of thou-
sands of devices due to the reliance on 
sparse direct linear solvers. Many at-
tempts have been made to allow for 
faster, large-scale, transistor-level cir-
cuit simulation. Fast-SPICE tools use 
event-driven simulation techniques 
and lookup tables for pre-computed 
analog device evaluations. Additional-
ly, they often use circuit-level partition-
ing algorithms and more efficient data 
structures to enable the simulation of 
much larger problems [7, 8]. Unfortu-
nately, the approximations inherent to 
these simulation approaches can break 
down under some circumstances, ren-
dering such tools unreliable.

With the transition from single-core 
processors to multicore processors, 
parallel transistor-level simulation has 
received more interest from the elec-
tronic design automation community. 
Developed through the ASC Program, 
Xyce is a parallel transistor-level simu-
lator whose purpose is to support the 
simulation of radiation effects on elec-
tronics. For SPICE-style simulators, 
like Xyce, the circuit is described by a 
netlist file, which lists the individual 
components and how they are con-
nected together. This list of devices 
and interconnectivity is transformed 
via modified nodal analysis into a set 
of nonlinear differential algebraic 
equations (DAEs):

dq(x(t))
dt  + f(x(t))= b(t),

where x(t) ∈ RN is the vector of circuit 
unknowns, q and f are functions repre-
senting the dynamic and static circuit 
elements (respectively), and b(t) ∈ RM is 

plex, so an exact mathematical solution 
is not feasible.

Instead, compact models are de-
rived from a combination of physical 
intuition, simplifying assumptions, 
empirical approximations, and (finally, 
after many simplifications have been 
applied) mathematical solutions. This 
combination can be hard to achieve 
in practice, but over the years a set of 
common approximations for semicon-
ductor devices have been established.

The simulation of ionizing radia-
tion effects in transistors and circuits 
is one of the purposes for which Xyce 
was designed. Compact models of cur-
rent due to radiation-induced ioniza-
tion, also known as “photocurrent,” 
have been developed to support this 
effort. Photocurrent in semiconductor 
devices (such as diodes and transis-
tors) is created when ionizing radia-
tion imparts enough energy on valence 
band electrons for them to be exited 
into the conduction band of the de-
vice, and thus become mobile. When 
this happens, these newly mobile elec-
trons leave behind positively charged 
holes in the valence band, which also 
become mobile and contribute to 
photocurrent. Under ionizing condi-
tions, these newly excited electrons 
and holes are considered to be “excess 
carriers.” Excess carriers result in ad-
ditional currents not present under 
normal circuit operating conditions.  
At high enough magnitudes the circuit 
could temporarily be unpowered.

To model this effect in a compact 
model, it is important to distill the 
transport behavior to as small a set of 
equations as possible. Fortunately, ex-
cess carriers can be treated separately 
from the other carriers in the device. 
Also, despite the fact that electrons and 
holes are oppositely charged, they can 
be treated as a single species, as long as 
the carrier densities are high enough 
for them to establish internal electric 
fields coupling them together. This is 
important because it means that pho-
tocurrent can be modeled with a sin-
gle transport equation, known as the 
ambipolar diffusion equation (ADE), 
which Van Roosbroeck [4] first suggest-
ed for semiconductors in 1953:

∂u
∂t

 = Da∇2u – µaE · ∇u – uτ  + g(t)

where u is the concentration of the ex-
cess carrier, E is the electric field, τ is 
the carrier lifetime, g(t) is the source 
rate due to radiation,  Da is the ambi-
polar diffusion constant, and µa is the 
ambipolar mobility. Photocurrent is 
determined from the following expres-
sion, evaluated at the boundary:

 J(t)= qDa ∂u(x,t)
∂x

So, if a solution to the ADE can be 
found, current can be estimated. The 
ADE has a number of published ana-
lytic solutions, which usually assume a 
one-dimensional geometry. Most also 
make other assumptions, such as an 
infinite domain. The most complete 
one-dimensional solution was pub-
lished by Axness et al. [5], in 2004, and 
is based on using finite Fourier sine 
transforms to transform the ADE into 
the nonhomogeneous heat equation.

u(x,t) = V(x,t) e–a·x+bt

∂V
∂t

 = Dp ∇2V + g(t) e–a · x + bt

The finite Fourier transform tech-
nique eventually yields the follow-
ing expression for current in a highly 
doped diode:

J(t) = 4q[L2

w
]  

∞

∑
n=0

∫̂0

tp g (t – uτ) e–a2n+1u du

Where L is the diffusion length and 
w is the width of the neutral region. 
An equation like this is applied to 
each neutral region of a semiconduc-
tor device model to obtain the total 
ionization current for that device. By 

It is necessary to 
predict the reliability 
and survivability  
of weapon systems 
and components 
when exposed  
to hostile radiation 
environments and 
electromagnetic 
insults.
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the input vector.
Time-domain (transient), transis-

tor-level simulation implicitly solves 
the set of nonlinear DAEs above 
through numerical integration meth-
ods, resulting in a nested solver loop. 
Numerical integration methods re-
quire the solution to a sequence of 
nonlinear equations, F(x) = 0. Typically, 
Newton’s method is used to solve these 
nonlinear equations, which generates 
a sequence of linear systems, Ax = b, 
that involve the conductance, 

G(t) = 
df
dx  (x(t)), 

and capacitance, 

C(t) = 
dq
dx  (x(t)), 

matrices. For DC (steady state) analy-
sis, which is often used to provide an 
initial guess for transient analysis, 
the q-terms are not present, so the lin-
ear system only involves the conduc-
tance matrix.

The computation time in transistor-
level circuit simulation is dominat-
ed by repeatedly solving the linear 
system of equations, which is at the 
center of the nested solver loop. This 
requires the assembly of the linear 
system, which involves device evalua-
tions for the whole circuit followed by 
the insertion of device contributions 
into the Jacobian matrix and residual 
vector. So, the most dominant part of 
the simulation time can be broken 
down into the device loads (device 
evaluation plus matrix and vector as-
sembly) and the numerical method 
used to solve the linear system. For 
smaller problems, the time needed 
to perform the device loads dictates 
the total simulation time. However, 
as the size of the circuit increases, the 
linear solution method will start to 
dominate the computation time.

Since this article is addressing 
modern stockpile technologies, the fo-
cus will be on scalable linear solution 
methods for circuit simulation.

SCALABLE LINEAR  
SOLUTION METHODS
The Jacobian matrices generated in 
circuit simulation are typically sparse, 
have heterogeneous non-symmetric 
structure, and are often ill-conditioned. 

been made on the use of parallel itera-
tive methods in transient analysis. Un-
fortunately, many types of precondi-
tioning techniques suffer from the fact 
that the number of iterations to solve 
the linear system will increase with the 
number of message passing interface 
(MPI) processes.

Recent developments in linear so-
lution methods for large-scale circuit 
simulation have focused on Schur com-
plement techniques to bridge the gap 
between direct and iterative methods, 
utilizing both to create a solver that is 
scalable and robust. While these new 
techniques have been integrated into 
Xyce, they are being developed in the 
ShyLU package within Trilinos [11]. 
ShyLU is a hybrid linear solver in both 

Direct sparse linear solvers [9, 10] are the 
industry standard approach because of 
their reliability and ease of use. This is 
understandable for smaller linear sys-
tems, because direct solvers are usually 
faster than their iterative counterparts. 
However, when the linear system has 
hundreds of thousands of unknowns or 
more, direct solvers become less practi-
cal as they suffer from poor scaling. 

Despite the problems inherent to 
circuit matrices, iterative solvers have 
the potential to be a scalable solution 
method for large-scale linear systems 
with lower algorithmic complexity. 
They are not as easy to use as direct 
solvers because their effectiveness is 
dependent upon finding an adequate 
preconditioner. However, progress has 

Figure 3. Strong scaling of Xyce simulation time and ShyLU linear solver time for 
MPI only execution of application-specific integrated circuit design.
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results are obtained using only MPI, 
threads may easily be employed in this 
framework by using a multithreaded 
direct solver for D or by multi-thread-
ing the multiple right hand side tri-
angular solves, D^(-1)*C, for the Schur 
complement. Adding this fine-grained 
parallelism to ShyLU will enable fur-
ther speedups in the linear solve and 
total simulation time.

CONCLUSION
Radiation modeling and circuit simu-
lation are essential for stockpile stew-
ardship. The development of more ac-
curate models for ionizing radiation 
effects in transistors and circuits will 
help researchers study collective photo-
current effects, such as power rail col-
lapse, while performing fewer tests on 
current and next-generation electron-
ics. Developing parallel, scalable solu-
tion methods for the large linear sys-
tems of equations generated through 
the simulation of modern stockpile 
technologies will help researchers 
validate design decisions. Both areas 
of research serve the nuclear stockpile 
by addressing the need for simulation-
based confidence mechanisms.
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from direct and iterative methods [12]. 

The Schur complement decomposi-
tion of a linear system is as follows. Let 
Ax = b be the linear system of interest.  
Suppose A has the form:

A = ( D
R

 C
G

)
where D and G are square and D is non-
singular. The Schur complement after 
eliminating the top row is S = G – R*D–1) * 
C. Solving Ax = b then consists of solving 

(D
R

 C
G

) × (x1

x2

) = (b1

b2

)

through these steps
1. Dz = b1.
2. Sx2 = b2 – Rz.
3. Dx1 = b1 – Cx2.

ShyLU uses graph/hypergraph parti-
tioning to permute the matrix into the 
form above, where D is a block diagonal 
matrix. This form, illustrated in Figure 
2, is called bordered block diagonal 
form. In general, each diagonal block 
in D corresponds to an MPI rank and 
is factored using a direct solver. This 
allows for steps 1 and 3 to be scalable. 
In step 2, the Schur complement, S, is 
never formed explicitly. Instead, an ap-
proximation of S is used to precondi-
tion the iterative linear solver that will 
perform step 2.

The Schur complement approach 
developed in ShyLU enabled Xyce to 
simulate a large modern integrated 
circuit design for stockpile steward-
ship.  The circuit design, including 
parasitic elements, has more than 2 
million devices and generates a lin-
ear system with around 1.9 million 
unknowns. A transient simulation of 
this circuit was performed on up to 256 
MPI processes of a commodity cluster. 
The results shown in Figure 3 indicate 
a 20x speedup in the linear solve time 
when compared to the KLU direct solv-
er [9]. Figure 3 also illustrates the per-
formance for this approach is optimal 
for 64 MPI processes and deteriorates 
for 128 and 256 MPI processes. This is 
caused by an imbalance in the matrix 
partitioning with 128 or more MPI pro-
cesses, such that some MPI processes 
have no rows in the bordered block di-
agonal form (see Figure 2). While these 


